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1 Introduction

The concept of opting for a losing move to win in the long run is a well-used
and maybe cliched strategy, but the Physics of it is still anew. In almost every
domain of human life (or beyond) these effects are seen. Be it the game of
chess, where sacrifising a less powerfull member properly may lead to a winning
situation after a few moves. Be it the concept of counter attack in the game
of football, where one draws out the opponent first(losing move), to win in the
following moves. Although the feel of these examples have a sence of unity, the
study of such complex games where a large number of parameters are present
is tideous, if not impossible.

The probabilistic games proposed by Juan M. Parrondo serves as an won-
derful yet simple model of such an event: Winning by the combination of losing
games. We intend to study the games numerically as well as analytically and
try to see if it is indeed a Paradox or not.

A similar model on the continuum domain is that of a Brownian ratchet.
We take the case of a flashing ratchet where an asymmetric saw-tooth potential
is flashed randomly to affect the motion a Brownian particle in 1D. Here the
particle shows a drift towards one of the sides and even if we add a biasness to
the opposite end, upto a certain range of biasness, the initial direction of drift
is maintained.

We would also like to see, if this “Parrondonian effects” are seen in other
context, in nature. If so, we would try to see what is the cause of such a
conuter-intuitive behavior.

2 Parrondo’s Paradox

The process of combining two losing games to arrive at a winning situation, is
demonstrated numerically with the example of a coin tossing game. The rules
are as follows:

2.1 Game A

A biased coin is tossed that has a probability (p) of winning. It is set as less
than %, making it a losing game. We define a positive parameter € to introduce
bias, i.e.

2.2 Game B

Consisting of 2 biased coins such that,

P1=15 — €
and
3

P2 =7 —€

Coin 2 is played if the capital of the player is a multiple of an integer M(say, 3).
Otherwise, coin 3 is played. So, the coin 3 is tossed a little bit more times on
the average, than the coin 2. But the probabilities are such that on an average



B is a losing game. If value of M is changed, the weightages would also change
and the probabilities may have to reassgined new values to make the game B a
losing one.

2.3 Simulation

We start, initially, with O money. If the player wins, unit amount of money is
added to his capital. If loses, unit amount is subtracted.

We chose € = 0.005. We played the games 100 times in the 4 following ways:

1. Game A only.

2. Game B only.

3. Game A and B randomly.

4. Game A and B, played in the sequence AABB.

An average over 50,000 configurations were done to obtain the variation of
capital w.r.t the number of games played. The plot is shown in Fig.-(1).



2.4 Plot of capital vs games played
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Figure 1: The plot show the variation of capital w.r.t the number of times
the games are being played. While the games A (= —0.93) and B (= —1.36)
are individually losing ones, when played together in a periodic (= 1.12) or
randomised (a2 1.31) fashion, they lead to a winning combination. The numbers
within parentheses indicate the approximate values of the capital after the 100
games.

2.5 Variation with M

The parameter M decides whether the coin 2 or coin 3 is played more often.
As M grows, coin 3 is played more and more number of times in the long run,
giving the game B a relatively winning edge. The expected increase in capital
with increase of M is seen in Fig.-2. Here the value of ¢ = 0.005, throughout.
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Figure 2: The plot show the variation of capital w.r.t the number of times the
games are being played. Here we have plotted only the random sequence of A
and B. Different curves show the variation when M is varied from 3 to 9. It is
seen that the variation is step wise in case of even M and continuous, otherwise.
The value of capital though increases with increase in M, the rate of that slows
down gradually. Here, ¢ = 0.005, for all the cases.

2.6 Variation with ¢

The parameter € decides the winning(or losing) probabilities of the games. As
€ grows, the winning probabilities decrease. The expected decrease in capital
with increase of € is seen in Fig.-3. The value of M is kept constant. Here, we
took M = 3.

2.7 Fairness of the game B

The fairness of a game can be defined in terms of the drift of the capital or the
expectation value of the capital after a number of trials. If a game is fair, there
should be no drift and hence the expectation value of capital after (n + 1)
turn, would be equal to the value of capital attained after the ny, turn, i.e;

E[X,41|Xo0, X1,.... X0n] = X0
where n € Z; and X, is the capital after the ny, game.
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Figure 3: The plot show the variation of capital w.r.t the number of times the
games are being played. Here we have plotted only the random sequence of A
and B. Different curves show the variation when ¢ is varied from 0.005 to 0.080
in multiplicative steps. Here, M = 3. We see the games go from a winning
combination to a losing one as ¢ is slowly increased.

Without the introduction of biasing parameter ¢, the game A is fair by con-
struction, (pwin = %) The nature of game B is somwhat complex as it is
capital dependant, implying E[X;|Xo] < Xo when X is a multiple of M, and
E[X;|Xo] > Xo when it is not a multiple of M.

Thus to know the nature of game B, we try it out a number of times and see
the averaged value of capital in that time frame, for the three non-redundant

initial value capitals, viz. 0,1,2. The plot is shown in Fig.-4.

2.8 Distribution and behaviour of the games

Although the average value of capital tends to a steady value after a large num-
ber of attempts, these, however does not give us the entire information about
the games or the capital. As the capital may vary between [—n,n] after the
game is being played n times, the probability distribution function of capital
does say how the capital is distributed about the mean, i.e, how far-off can the
games be from a fair condition and what is the amount of deviation. In order
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Figure 4: The plot show the variation of capital w.r.t the number of times the
games are being played(Here,n = 100, ncon figurations = 50000). Here we have
plotted only the game B. Different curves show the variation when initial capital
is 0,1,2. Here, M = 3, e = 0. The games initially pick up a winning or losing
trend depending on the initial capital. But soon, settles down towards a driftless
steady value,indicating fairness of game B.

to capture this, we define the central probability p(z,n),as follows:

ﬁ(x,n) — p(z,n+1) + 2p(z,n) + p(z,n—1)

We plot it for games A, B and randomized games for 3 different values of the
biasing parameter, ¢ = —0.1,0 and 0.1. They are shown in figures 5.

2.9 Standard deviations of the games

The game A has a Gaussian PDF, which can be taken as a benchmark of judging
the “behaviour” of games with number of times they are played. The normal
distribution of game A has the following parameters, A (n(p — q), 4npq), where
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Figure 5: The plot shows the distribution of capital, x after ny, game being
played. Here we have plotted only game A. Different curves show the variation
when € = —0.1,0 and 0.1. The PDF is a Gaussian which becomes flatter and
flatter as n increases. The peak corresponds to the mean value of capital, which
is drifted towards positive value when e = —0.1(winning) and towards a negative
value when e = 0.1(losing).

q = 1 — p is the losing probability.

For p = % — ¢, the mean value of capital, after n;, game is (x) = —2ne and the
standard deviation, o, = 2,/npq.

The linear dependancy of o, with /n says the more compact the values are,
the less would be the slope of o, vs \/n curve, implying the well behaviour of
the game.

So, in the figure 8, we plot the variation of o, w.r.t y/n for the games
A, B, and randomized games. We compare the slopes to see the behaviour of
games.

2.10 Mixing sequences

The next question that arises is how far do the games have to mix to break the
pattern of game B. Here the broken pattern will be manifested by a positive
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Figure 6: The plot shows the distribution of capital, x after ny, game being
played. Here we have plotted only game B. Different curves show the vari-
ation when ¢ = —0.1,0 and 0.1. The PDF is jagged which becomes flatter
and flatter as n increases. The peak is drifted towards positive value when
e = —0.1(winning) and towards a negative value when e = 0.1(losing).

value of capital. We play a total of 100 games, in different mixing sequences
[a,b], where the notation refers to playing the game A a times, followed by
playing the game B b times and so on.

The variation of capital is plotted w.r.t a and b, in figure 9. The plot shows
that when the games are repeatded at large interval, there is hardly any gain.
Whereas, if the games are mixed more and more frequently, the gain increase.
The result suggests that the mixing of the game is the key to producing a gain.

2.11 Randomized mixing via the parameter v

So far, we have played the randomized version of the games with equal proba-
bility of choosing between A and B. This can be modified with a parameter
(0 < v < 1) that determines the probability of choosing game A. The variation
of capital w.r.t v is shown in Fig.-10.

10
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Figure 7: The plot shows the distribution of capital, x after ny, game being
played. Here we have plotted only the randomized games. Different curves
show the variation when € = —0.1,0 and 0.1. The PDF is less jagged than that
of game B which becomes flatter and flatter as n increases. The peak is drifted
towards positive value when e = —0.1(winning) and towards a negative value
when ¢ = 0.1(losing).

3 Brownian ratchet

3.1 Flashing ratchet in 1D

We consider a Brownian particle in 1D. An asymmetric sawtooth potential is
flashed on and off, to affect the motion of the particle. Without any other
biasness, the asymmetry and randomness, together, sets the particle in a drift
towards one of the sides. Even if a bias (a small gradient) is applied to the
opposite end to balance this, upto a value of biasnessness, the direction of initial
drift is maintained as shown in Fig. -11.

3.2 Explanation of the games

The games were designed as an illustration of Brownian ratchet problem. It is a
system where brownian noise is converted into drifting motion in particular di-
rection using a “ratchet” potential. The analogy between the Parrondo’s games
and Brownian ratchet helps in understanding the later through the former.

11
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Figure 8: The standard deviation of the capital after the ny, game (o,(n)) is
plotted against /n. Although the PDF of game B was more jagged, but the
slope is less for that case, indicating that game B is atleast as well behaved as(if
not more) game A. The slope for the randomized game’s curve is intermediate,
showing a moderate compactness of values. It is as if the pattern of game B
is broken by the game A to arrive at the randomized case. Here, the value of
€ = 0 and the averaging is done over 100, 100 sample paths.

12
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Figure 9:

The plots show the variation of capital after ny, game, for different
deterministic mixing sequences between the games. Here, n = 100 and mixing
sequence is used as [a,b]. For the 1% diagram, M =3, p=0.5, p; = 0.1, py =
0.75, for the 2"¢ diagram, M =5, p = 0.5, p; = 0.1, ps = 0.634.
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Figure 10: For the biased game, when v = 0(only game B) or v = 1(only game
A), the capital drifts towards a losing value. But in the intermediate region,
there is a portion of the curve that has a positive average capital. The optimal
value of v for which the mixing produces maximum gain can also be found
from such diagrams. Here, we have considered 100 games, averaged over 50,000
configurations. The plots are for e = 0 (top) and e = 0.005 (bottom)
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Figure 11: The asymmetry kicks in through the value of . Here, o < 1/2. The
Initial drift occurs towards the steeper slope. Even after a slight tilting of the po-
tentials, this direction is maintained. U,, = Asysmmetric sawtooth potential
and Uyrr = flat potential.

3.3 PDF in ratchet potential

The flat potential(V(z) = 0) generates a Gaussian PDF, which becomes more
and more flat with passing time. If there is a slope to it, the PDF additionally
shows a drift downhill. For an asymmetric saw-tooth like potential, the Gaussian
PDF gets distortedwithin the region in the following way: Here the PDF of
the capital shows a similar nature for the games A(flat potential) and game
B(asymmetric saw-tooth). The periodic nature is captured via different initial
values of the capital.

3.4 Analogous quantities

Although the Brownian ratchet is a continuous temporal and spatial problem,
there are certain analogies which can be drawn between these 2. As the Par-
rondo’s games are much more mathematically tractable, hence they can be
useful in analysis of the former. The list of analogous quantities are mentioned
below:

3.5 Breaking of the equilibrium distribution

The PDF due to game B was similar to that of PDF of a ratchet potential,
in equilibrium. The pattern of PDF in equilibrium is broken by momentary
switching on and off of the game A. In a sense, the PDF which was distributed
about the minima of a sawtooth potential, is spread out by the onset of game
A (flat potential). The probability density that builds up near the steep edge,

15
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Figure 12: The PDF's of games A(in black) and game B(in brown) are super-
imposed on the same plot here. The parameters are, M =7, p = 0.5, p; =

0.075, po = 0.6032.

Table 1. The relationship between quantities in Parrondo’s games and the Brownian ratchet.

Quantity

Brownian Ratchet

Parrondo’s Paradox

Source of Potential
Switching

Switching Durations
Duration

Biasing

Transport Quantity
Measurable Output
External Energy
Potential Shape
Mode of Analysis

Electrostatic, Gravity
Uqsn and Uyg applied
for 7on and Tog

Time

Macroscaopic field gradient
Brownian particles
Displacement x

Switching U,y and Usg

Depends on «

Fokker-Planck equation

Rules of games

Games A and B played

a and b

Number of games played
Parameter €

Capital

Capital amount X,

None

Probabilities py, po and M
Discrete-time Markov chain

16
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Figure 13: The plots of PDFs of games A, B and randomized ones are superim-
posed. The jagged pattern of game B is broken by game A to form a relatively

smoother pattern, which allows for drift of capital.

during the presence of game A, allows for a probability current towards the next
minima. This leads to the breakdown of the equilibrium probability distribution

and sets the drift.

4 Analytic results

We want to use the Discrete-time Markov chains(henceforth, called as “DTMC”)
to analysis the games. A “modulo game” would also be defined to attain steady

state solutions.

4.1 Game A

For the game A, the DTMC is represented in Fig.- 14.

The transition matrix P 4 is given as follows:

17
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Figure 14: A part of the “doubly-infinite” DTMC is shown in this figure, when
the value of capital is around the integer n. The hopping or transition proba-
bilities from one value to another value is shown above the arrows. The entire
scenario can as well be depicted via transition matrix P4 of infinte dimension.

— Y Y Y= =~

T

1—-p1 1—p2 1—p2 1—m 1—pe

Figure 15: A part of the “doubly-infinite” DTMC is shown in this figure, when
the value of capital is around the integer 3n. The hopping or transition proba-
bilities from one value to another value is shown above the arrows. The entire
scenario can as well be depicted via transition matrix Pg of infinte dimension.

O 1 _ p ... DRI (p)
DY DY p O 1 —_— p
(1—p) - e 0
The bounds are theoretically infinte but in practice it is a 2V + 1 dimensional

matrix for a game played N times. Here the bracketed probabilities are men-
tioned for the sake of completeness.

4.2 Game B
For the game A, the DTMC is represented in Fig.- 15.

The transition matrix Pp is given as follows:

18



0 1—po (p2)
P1 0 '
D2 o 1—po

PB: 0 1_p1
P2 0 1-p

P1 0

(1-p1)

where the losing and winning probabilities in every My, column are 1 — p; and
p1 respectively. The bracketed terms are included for completeness.

By extracting the periodic subsystem from the DTMC representation in
Fig.15, the dynamics of the games can be more easily studied. The subsystem
is be defined by

Y, = X,,modM

Though this representation does not reveal the absolute value of capital, mean
ingful trends can be easily calculated. The DTMC defined by Y,, has the states
{0, ---, M — 1}, and is cyclic. That is, if we win at the highest state M — 1
we go back to state 0 and vice versa from state 0 to M — 1. The corresponding
DTMC to Y,, is shown in Fig. 16.

For the game A, a module formalism can also be used if we set p; = ps = p.
A cyclic DTMC instead of a infinite DTMC helps in analysis of the games.
It is similar to that of balancing a chemical reaction using detailed balance.
When written from a “back of the envelope” calculation the game B is winning
when the clockwise probability is greater than the counterclockwise probability
of rotation,i.e

pipy > (1 —p1)(1 — po) M1

The modulo rule restricts the dimension of transition matrix to M x M.

0 Topy oo o (p2)
D1 0 .
Pp= : P2 o 1—po

) 0 1—po
(1—p1) - po 0
4.3 The randomized game

We deal with this randomness by the introduction and use of the mixing param-
eter v, which gives the relative probability of choosing the game A at random.
Thus the winning probabilities ¢; and g2 are as follows:

19
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Figure 16: The cyclic DTMC is shown in this figure, when the value of capital
is circling around the range [0, M — 1]. The hopping or transition probabilities
from one value to another value is shown above the arrows. The entire scenario
can as well be depicted via transition matrix Pg of M x M dimension.

¢1 =yp+ (1 — v)p1, when capital is a multiple of M
and
g2 = yp + (1 — )p2, otherwise

The corresponding losing probabilities are 1 — ¢q; and 1 — go,respectively. The
treatment of the randomized game can be done in a similar manner to that of
game B as it also forms a DTMC.

4.4 Playing the games analytically

Let, m(n) represents the state vector showing the capital after the game is being
played n times. Now, if the transition probability between the games is known
and given as P, then we have,

m(n) =P"7(0)

The true distribution of the capital can be attained if P is constructed keeping
the doubly infinite nature in mind. For a trial of N times, it suffices to take P as
a 2N +1 square matrix. If we start with 0 capital, then 7(0) = [---,0,1,0,---]7
For the mixing of games via [a, b]

7(n)l@ = P2 r(0), where

P Py if (n—1)mod(a+b) < a,
X Pp otherwise

20



where, n =1,2,---
For the mixing of games via ~
w(n)Y = Piw(0)
where, Pr = 7P4 + (1 — v)Pp

4.4.1 Calculation of statistical quantities

We define the vector x = [N, --- , N] which contains all the possible values of
the capital (states), when playing N games. Thus the mean(u,) and standard
deviations(o,,) are given as

o = xm(n)
o0 = /)Pl

4.5 Equilibrium distribution

The stationary state is reached when,

m(n+1) =Pr(n)

Thus at the stationary state we have,

g ) =

In order to find the states, we need to solve the equation
(I-P)r=0

One can take the steady state distribution such as that it is proportional to
the diagonal cofactors of I — P.i.e

1
m = —diag(cofac(l — P)),
D
where D is the normalization constant. The function ‘diag’ returns the main

diagonal of a matrix and ‘cofac’ gives the cofactors of a matrix.
For M=3, the states are found, which are given below:

1—po + p3
8 = D 1—p2+pip2
1—p1+pip2

where, D = 3 — p1 — 2p2 + 2p1p2 + p3
For game A, p; = py = p,then

1
1
1

21



agreeing with the expected value of having equal probabilities in each state.
For game B with no bias(e = 0),we have

p_1
13

N Ut

6
For the randomized game via the paramter v with no bias(e = 0),we have

L [ 245
B 180

709 984
4.6 Constraints of the games

The motive is find a stationary state for a given set of parameters which make
the games A and B losing while the combination a winning one. The winning

probabbility is defined as,
M—1
Pwin = Z TiPj
j=0

If pyin > 1/2 then (X,,) increases and the game is a winning one. (1)
= 1/2 then (X,,) stays steady and the game is a fair one. (2)
< 1/2 then (X,,) decreases and the game is a losing one. (3)

For the game A, we require,
1-p
o> 1

For the game B, the winning probability becomes,

pgm = Top1 + M1P2 + -+ Tpr—1P2
= mop1 + (1 — mo)p2

Putting the proper values of stationary state variables and keeping in mind the
condition for B to be losing (p5,, < 1/2), we get

(1*171[))1(;%*172)2 -1

For the randomized game to be winning, the condition reads as,

(1—q1)(12—¢12)2 <1
q193

4.7 Range of biasing parameter

The biasing parameter was shown to control whether a game was winning or
losing. In terms of Parrondo’s paradox, we have shown that randomizing the
games improves the performance. However, if is too large then all the games
lose, albeit the randomized game does not lose by as much. Conversely if € is

22



too small (negative), then all the games win. Thus,e needs to be chosen such
that it biases games A and B to lose, but the improvement gained by mixing
is greater than the offset made by e. By substituting the probabilities of the
original games into the previous equations, we deduce a range of € for which
Parrondo’s paradox exist. The equations are respectively,

e>0
€(80€? — 8¢ +49) > 0
320€® — 16€% + 229¢ — 3 < 0

For the quadratic part, b> — 4ac < 0, so the roots are imaginary, meaning
that 80e2 — 8¢ + 49 > 0 for all ¢, which leaves ¢ > 0. We can numerically find
the roots or use Cardan’s method for cubic polynomials to deduce that there is
one real and two imaginary roots. Either way the real root is €,,4, ~ 0.0131.
which gives the possible range of the biasing parameter as 0 < ¢ < 0.0131. To
approach the upper limit of this range €,,q,: , n needs to be large to offset the
initial transient behavior.

5 Examples of Parrondonian effect

The close analogy between the flashing ratchet (continuum model) and Par-
rondo’s games (discrete model) shows that the switching between asymmetry
and flat gradient in space can break the drift pattern of a brownian motion,
similar to the losing trend being broken by the alterartion between losing game
A and asymmetric losing game B. This leads to a logical question of whether
this analogy can be extended in other fields or not. What sort of asymmetries
can lead to such and effect of “combining two losing combinations to arrive at
a winning one”, henceforth called as “Parrondonian effect”.

5.1 The trueling problem

The truel is similar to a traditional duel except three, rather than two, players
have a shoot out. The last man standing is the winner. Here the case of
sequential truel, where the gunmen take it in turns to shoot, is considered. The
detailed rules are explained with the figure 17, but essentially the weakest Player
A has first shot, then Player B, and so on. Intuitively, one may try to eliminate
the strongest one out of Player B or Player C as the preferable strategy. The
most preferable one, surprisingly, is neither! It turns out that your best strategy
for survival is in fact to waste your bullet and shoot into the air.

5.2 The interplay of redundancy and pleiotropy

The term pleiotropy describes an agent that performs multiple tasks, while
redundancy is when multiple agents perform the same task. This is clearly
illus- trated in figure 18, where we see that pleiotropy can be thought of as
the inverse of redundancy. Pleiotropy and redundancy can be ubiquitously seen
in many every day networks, ranging from neural interconnections through to
client-server based networks made up of server nodes and client nodes.
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Figure 17: Three gunmen with unlimited amount of ammunition are involved
in the game. Each can fire only once in each round of sequential order of firing.
The probability of a killshot for them are: po = 1/4, pg =1/2, pc = 1, which
determines the “strength” or weekness of a player. With the given probabilities,
A has the first go, then B, followed by C.

A
Redundancy
» High cost
1 2 3
\ B C

Pleiotropy

» Low robustness

Figure 18:
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Figure 19:

Figure 18 shows that, individually, pleiotropy and redundancy are rather
like ‘los- ing games’, as redundancy comes at high cost and pleiotropy comes
with low robust- ness. Figure 19 illustrates that a mixture or interplay between
pleiotropy and redundancy helps to overcome their individual disadvantages.
Biological systems provide important examples of pleiotropy and redundancy.
Intercellular messenger molecules such as cytokines may act as links between
nodes (cells). A deeper knowledge of how pleiotropy and redundancy operate
within the cytokine networks, may improve understanding of how to better
manipulate disease states [28-30]. To date, little work has been carried out to
explore the trade-offs between pleiotropy and redundancy in an evolutionary
computational paradigm—future work in this area may help to explore the
general principles behind such trade-off in the presence of both limited and
unbounded resources. This may enable us to answer a number of fundamental
open questions about how real biological, social, and elec- tronic networks are
optimally wired.

5.3 Costly signalling

A large area of research where there is a complex interplay of both losing and
win- ning strategies is that of “costly signalling”. Costly signalling is a term
used by evolutionary biologists for the situation whereby an animal advertises
its fitness, for example, for procuring a mate. In order to ensure that the
signal is ‘honest’ it has been conjectured that it must come at a cost to the
animal—otherwise it would be too easy to send out fake signals. The classic
example is the fancy plumage of the male peacock. The larger these feathers
are the more attractive the male becomes to his entourage of females. However,
the feathers come at cost because (a) they make the male easier to spot by a
predator, and (b) the feathers are cumbersome when escaping from a predator.
Therefore, the conjecture is that the feathers are an honest signal, because they
advertise that the male is fit enough to survive despite them. Thus in order to
‘win’ and find the optimal mate, the male plays the losing strategy of becoming
vulnerable to predators.
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5.4 Other examples

Here we will see that an asymmetry in any arbitrary variable can lead to a
ratcheting mechanism. The spatial part is well reflected in the Brownian ratchet.

5.4.1 Brazil nut paradox

If we randomly jiggle a bowl of sugar, a bag of flour or a backet of sand, the
lumps rise to the top. The scientific name for this phenomenon is the ‘Brazil nut
paradox’, named after that fact that the large Brazil nuts rise to the top when
you shake a bag of mixed nuts. Here, the random shaking of the container drives
the large nuts ‘uphill’ against the gravitational gradient and thus this is clearly
a Brownian ratchet. The asymmetry in this case lies in the size distribution of
the particles and the fact that gravity is directional.

5.4.2 Longshore drift

Another common example is that of longshore drift on a beach. Here, it is
common to find that the sand and shells tend to pile up on one end of the
beach. This tends to happen when waves come in at an angle to the beachfront.
So for example, if we have a south facing beach, and waves impinging in a north-
east direction, then sand and shells will tend to pile up on the east side of the
beach. Waves will come in a north-easterly direction, but ebb in a southerly
direction, drawing out a ratchet-like profile, and dragging material toward the
east. Incoming waves loosen the material, reducing frictional forces, and as
the waves ebb away friction increases again. Thus the ratchet asymmetry is in
the difference between angle of entry and angle of ebb, as well as difference in
frictional forces experienced by the material.

When trading on the stock market, a common injunction is to buy-low sell-
high in order to ratchet up one’s gain. The asymmetry here is in price when we
buy and sell, in order to exploit the natural price fluctuations in the market.
When paying the restaurant check, at the end of a meal, a client will typically
complain if he or she is over charged. However, if the check is accidentally
under charged, the client might chose to stay silent. This asymmetry in the
transmission of information is used the ratchet up the gain of the client. This
is somewhat akin to the previous buy-low sell-high example.

So far we have seen spatial, frictional, informational, and money ratch-
ets—but is a ratchet in the time variable possible? The answer is yes.

5.4.3 Two girlfriend paradox

To illustrate a time ratchet we briefly review the two-girlfriend paradox.

The two-girlfriend problem is a mindboggler that goes as follows. Refering to
Fig- 20,the problem stats that Bill arrives at a train station at a random time
each day. One train leaves for the east every 10 mins and one train leaves for
the west every 10 mins. His strategy is to jump on whichever train arrives
first. It turns out on av- erage that he sees Monica nine times more often than
Hillary. This seems a little hard to believe given that he arrives at a time
random time each day. The answer is that this is a phase (time) ratchet and
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Figure 20: The two girlfriend problem faced by Bill. An asymmetry in time, due
to phase difference of east bound and west bound trains and the randomness of
Bill’s arrival tiem leads to a drift towards Monica from Bill’s side.

Scenario Source of Randomness Asymmetry

Brazil nut paradox Shaking the container Particle sizes/Field
Longshore drift Waves breaking on the beach Geometry/Friction
Restaurant check  Waiter’'s error rate Information
Buy-low, sell-high Market fluctuations Price

2-Girl paradox Bill's arrival tmes Train phase (time)

we must therefore look for an asymmetry in the time variable. In other words,
there can be a phase difference between the trains. Imagine a scenario where
the eastbound train leaves every 10 mins on the hour, and the westbound train
leaves every 10 mins one minute later. If Bill arrives after, say, 10 : 11 am he
will have a nine minute window that captures the eastbound train, but if he
arrives after 10 : 10 am there is a one minute window in which the westbound
train will arrive first. Thus if he arrives randomly, he is more likely to end up
in the nine minute window, and thus sees Monica nine times more often.

The follwing table summarizes the a few examples highlighting the different
forms of asymmetry we have identified.

5.5 Volatility pumping in stock market

It is a well used technique in stock market. The trick is to mix two types of
stocks, one of high risk and high return, The other one is of low risk and low
return. Individually, they can be thought of as losing games, providing no net
gain in the capital of the investor. But a method of “Portfolio rebalancing”
where one can gain in a hefty amount with increasing time. A toy model is
explained below:

5.6 Thermodynamics of games of chance

The true analogy between Parrondo’s games(discrete version) and Brownian
ratchet(continuos version) helps in understanding the discrete-continuum in-
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Figure 21: Volatility pumping a low-risk stock with a high-risk stock. The dot-
ted curve simulates a mediocre low-risk stock that in the long run neither wins
nor loses. The solid curve represents a volatile stock that gives a 25% expected
return, though is high-risk. A simple toy model of volatility is implemented
here, where the stock simply halves or doubles, at random, its previous value at
each time-step. The chained curve is found by selling both stocks at the end of
each time step, adding the total cash to get T', then repurchasing them at the
beginning of each time-step at a 50 : 50 split,that is, we purchase T'/2 worth of
the high-risk stock and T'/2 worth of the low-risk-stock. This is process called
portfolio rebalancing. Surprisingly, the chained curve grows exponentially, even
though the two stocks individually do not perform as well. Both stocks start at
Day 1 priced at 100, and thus the combined portfolio (chained curved) starts
at 200. The vertical axis is the return in dollars plotted on a logarithmic scale.
The return on the rebalanced portfolio is so large that we would not be able to
see the individual curves, without the logarithmic plot.
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Figure 22: The condition for a non-zero auto correlation between two elements
in the final mixed sequence is that oy + as # 1 and p1 # p2, where «;’s are
the transition probabilities from state ¢ to state j, and u;’s are the means of the
sequences.

reface for such games of chance. This may lead to development of thermody-
namics of all such games in a more rigorous manner. The time reversibility
is mapped to unbiased probability and thermodynamic equilibria. While time
irreversibility is mapped to the other possibilities in these cases.

5.7 Allison mixture

It is a mixture of two random sequences in random ordering which may lead to
an ordered sequence under some restrictions. The state diagrams are explained
in the following fig. 22. The process can be related to the sequencing of bases
while DNA encoding. Although further progress in this field is yet to be made.

6 Conclusion

6.1 Summary

The fact that and asymmetry and a source of randomness leading to a drift or
directional flow is of high interest. The phenomena is even more interesting as
it is seen in spatial, temporal, probability space as well in the cases of social
dynamics and biological/genetical contexts.

The challenge is to find the portion of phase space where the individual cases
are“ losing” and teh mixture is “winning”, in the sense of generating a drift in
favoured direction. For Parrondo’s original games, it is found and well studied.
The biological cases are being taken up as open problems.

The close analogy between Brownian ratchet and Parrondo’s games and
analytic foundation suggest that it Can serve as a discrete-continuum interface
model. Studying this may lead to the development of a general formalism in
this field.

6.2 New outlook

The history dependant multiplayer versions of Parrondo’s games are still being
studied. The latest one being in the present year.
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The Allison mixture shows that random mixing of random sequences leads
to a correlated or ordered sequence. This concept is thought to be a prospective
way of how encoding of DNA takes place.

Quantum mechanical version of the games are being studied. More problems
are being looked into where they map onto a physical picture.
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