Dynamics of Eulerian walker

Ayan Bhattacharjee

Seminar Project Presentation, 2014

< ≣ > <

= 200

Why Eulerian walk?

- System and walker affect each other.
- Eulerian walks generate spanning trees.
- Seen in: geological models of river basin distribution, distribution lines of water supply or internet LAN etc.
- Serves as a model of self-organization and self-organized criticality.

Configuration and Dynamics

- A graph G of N nodes
- j^{th} node having τ_j outgoing bonds
- j^{th} node having an outgoing *direction* n_j associated, where $1 \leqslant n_j \leqslant \tau_j \forall j$
- A Walker is added at any randomly chosen site *i*
- The configuration is completely specified by the set of values $\{n_i\}$ and the position of the walker

Configuration and Dynamics

Dynamics

• After arriving at the site *j*, the walker changes the direction of arrow with the rule:

$$n_j \longrightarrow mod(n_j + 1, \tau_j)$$

- Walker moves along the new direction n_j.
- For an open graph the walker finally leaves the system.
- For a closed system the walker continues to walk forever, finally settling into a *limit cycle* of length $\sum_{i=1}^{i=N} \tau_i$. In this cycle every outgoing bond is visited exactly once. These walks are known as Eulerian circuits.

Configuration and Dynamics

Eulerian circuit

• An Eulerian walk on a closed graph of 4 nodes, where the walker finally settles into the *Eulerian circuit: abcdcbaca*.

A. Bhattacharjee Dynamics of Eulerian walker

Abelian nature of walks

The Δ matrix

For a graph of N points, $\Delta_{N \times N}$ is defined as:

 $\begin{array}{l} \Delta_{\it ii}\equiv No \mbox{ of outgoing bonds from site i} \\ -\Delta_{\it ij}\equiv No \mbox{ of bonds from i to j} \end{array}$

-

Abelian nature of walks

The particle addition operator a_i

• a_i and a_j commute, i.e $[a_i, a_j] = 0$

•
$$\prod_{j} a_{i}^{\Delta_{ij}} = I, \forall i$$

글 🖌 🖌 글 🛌

3 = 1 - 1 A C

Abelian nature of walks

What is a *spanning tree*?

• A collection of (N-1) bonds on a graph of N nodes, which form a single connected cluster.

-

Abelian nature of walks

Spanning trees in Eulerian walks

- A Eulerian walk ending at site j, generates a spanning tree rooted at j.
- The figure shows four such spanning trees generated by the "first Eulerian circuit".

Abelian nature of walks

Method of study

 $\bullet~\mbox{Recurrent states} \Leftrightarrow \mbox{Spanning trees on the graph}$

E F K E F

1212

Avalanche of cyclicity

Loop formation on a spanning tree

• The loops are formed when an arrow turns in a manner which encloses a part of spanning tree.

● → Present location of the walker

Avalanche of cyclicity

Nature of the loops

• The rule of evolution of arrows determine the nature of the first loop that is formed.

Avalanche of cyclicity

Definition of avalanches

- Recurrent state \Leftrightarrow spanning tree.
 - \Rightarrow Particle added.
 - \Rightarrow Closing a loop of arrows. \Leftrightarrow loops disappear
- The interval of existance of the loop can be called the avalanche of cyclicity or simply avalanche.

Avalanche of cyclicity

Duration of avalanche

- The time it takes for an Eulerian walker to remain within the first formed loop, is called the duration of avalanche.
- During this time, one loop may transform into another one.
- When the walker leaves the system after all the loops have disappeared from the system, the system settles down to one of its reccurrent states.

Avalanche of cyclicity

Evolution of a loop

- For a \mathcal{O}^+ type graph $\mathcal{L},$ we consider a \mathcal{O}^- type closed graph $\mathcal{G}.$
- The walker stays within the loop until all the arrows on the boundary of the loop are flipped to convert the loop from a O⁺ to the loop O⁻.

Avalanche of cyclicity

Determining the number of visits

- All inner sites (s) are visited exactly 4 times.
- All perimeter sites, that is associated with an angle $\frac{n\pi}{2}$ are visited exactly *n* times.

Avalanche of cyclicity

Duration of avalanche T rectangluar loop

- The simplest loop being a rectangle with a perimeter *p* which encloses *s* sites within it.
- Here, total number of steps taken by the walker is identified with the "duration of the avalanche" (*T*).

Avalanche of cyclicity

Duration of avalanche T arbitrary loops

 Any arbitrary loop on a square lattice can be attained from a rectangular loop of equal perimeter(p), using the follwoing type of transformations, repeatedly.

4 B N 4 B N

Avalanche of cyclicity

Duration of avalanche T arbitrary loops

- Here, number of inner sites go down by 1.
- 2 of the sites with angle π are transformed into sites with angles $\frac{\pi}{2}$.
- A site with angle $\frac{3\pi}{2}$ appears.

$$\delta T = -4 - 4 - 1 + 3 + 2 \tag{1}$$

= -4 (2)

A B + A B +

• This change in T is already accounted for, as $s \to (s-1)$, leaving the expression of T unaltered.

Conclusion

- Recurrent states of the Eulerian walker model(EWM) have 1-to-1 correspondance with spanning trees on the same graph. This connection can be exploited to investigate the relaxation process in EWM.
- The formation of loops in the graph leads to avalanche of cyclicity. The nature of loop depends on the rule of arrow-evolution.
- The duration of avalanche can be found out given the perimeter and number of sites within a loop, irrespective of the shape of the loop. In the thermodynamic limit, the duration is connected to the area inside the loop.

References I

- A. M. Povolotsky, V. B. Priezzhev, R. R. Shcherbakov Dynamics of Eulerian walkers. *arXiv: 9802070v1 [cond-mat.stat-mech]*, 6 Feb 1998.
- V.B. Priezzhev, D. Dhar, A. Dhar, S. Krishnamurthy. Eulerian Walkers as a Model of Self-Organized Criticality. *Physical Review Letters*, 77, 25(1996), 5079.
- S. S. Manna, D. Dhar, S. N. Majumdar Spanning trees in two dimensions. *Physical Review A*, 46, 8(1992), R4471.