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Self-organization and Self-organized Criticality
Extreme events in nature and society

Self-organization:
How Nature Works

Spontaneous emergence of global correlation from local
interactions.The dynamics of the system,itself,guides it
from a disordered state to an ordered state.
Abundant in Nature.
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Self-organization and Self-organized Criticality
Extreme events in nature and society

Self-organized criticality (“SOC”)

Seen in driven, dynamic, non-equilibrium systems
Key features:

Critical state: Long ranged spatio-temporal correlation,
No external Fine tuning is needed.

Plausible as a source of natural complexity:
Earthquakes
Forest Fires
Epidemics
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Self-organization and Self-organized Criticality
Extreme events in nature and society

What are Xevents?

Events having extreme impacts.
Occurring in systems with complex dynamics which are
usually far from equilibrium.
Located in the tail end of a probability distribution.
One of the suggested dynamics is SOC
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Self-organization and Self-organized Criticality
Extreme events in nature and society

Our study:
The statistics of Xevents in an SOC system

SOC in a sandpile.
Temporal correlation among Xevents due to the finiteness
of system.
Predictability of Xevents, depending on externally
observed quantities.
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

The BTW sandpile model:
Description of system

Addition of sand grain:
On an LxL square lattice with open boundary condition.
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Storage of sand grains:

In The form of Sand Column:
Number of grains at (i,j)
= Height of sand column at (i,j)
= hij
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Dynamics of system:
Toppling mechanism and outflow

Threshold height: hc = 4
Grain addition: hij −→ hij + 1
If hij < hc , (Stable column)
hij −→ hij
If hij ≥ hc , (Unstable column)
hij −→ hij − 4
hi ′j ′ −→ hi ′j ′ + 1, where, (i ′, j ′) ≡ (i ± 1, j), (i , j ± 1)
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Avalanches:
Meaning and measurement

Measurement:
Total number of toppling(St )
Internal time steps of Avalanche(τt )
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Height of sand column:
Variation with added grains(time)

Average height of sand column: 〈h(t)〉 =
P
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Height of sand column:
Variation with system size

Time averaged height: 〈h(L)〉t =
Pt=t2
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〈h(t ,L)〉
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Linear fit: Intercept= 2.123
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Avalanche dimensions:
Spatial correlation

If Avalanches of size si occurred ni times out of total N
trials: D(si) = ni

N
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Avalanche dimensions:
Temporal correlation

If Avalanches of lifetime τi occurred ni times out of total N
trials: D(τi) = ni

N
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Avalanche dimensions:
Relating lifetime and size

If Avalanches of lifetime τ had sizes si : 〈s(τ)〉t =
Pn

i=1 si
n
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Bak-Tang-Weisenfeld Abelian Sandpile model
Simulations and results

Avalanche dimensions
Variation with system size L

Average Avalanche Size 〈s(L)〉t =

Pt=t2
t=t1
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Definition of observation time series:
In a sandpile

The avalanche size,for the addition of i th grain,is denoted
by si .
The sequence of si ∀ i ∈ (1,N) is called the “Observation
Time Series”
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Definition of extreme events:
In a sandpile

Avalanches having a magnitude greater than a prefixed
value η are defined as “Extreme Events" in the sand pile.
Recurrence Time(τ ) is the time between two consecutive
“extreme" avalanches.
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Distribution of recurrence time(τ ):
Study of temporal repulsion

Plot of probability P(τ ) vs. normalized recurrence time(τ )
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Event series and decision variable:

Two new quantities are introduced:

Event Series {Xi} : Xi = 1,when si ≥ η
= 0,when si < η

Decision Variable: yi =
i∑

k=1

aksi−k ,0 < a < 1

= ayi−1 + asi−1

yi takes into account all the past avalanche data but with
different weighing factors. The nearer avalanches have
more impact and the farther ones have less impact on the
value of yi for certain i.
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Conditional probability

The conditional probability P(X = 1|y) is constructed from
the pairs (Xi , yi). The plot P(X=1|y) vs. y is shown for
different η values[2].

Figure: Figure adapted from A. Garber, S. Hallerberg, H. Kantz,
Physical Review E, 80,026124(2009).
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Variation around extreme events:

Snapshot of the observation timeseries showing 3
Xevents(black lines) for η = 16016. The red lines show 25
previous avalanches and the blue lines mark the
subsequent 10 avalanches.
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Variation around extreme events:

Variation of Avalanche size(si ) and Decision Variable(yi )
around an Extreme Event
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Variation around extreme events

Variation of conditional probability P(X = 1|y) with relative
time t,as observed by Garber et al[2].

Figure: Figure adapted from A. Garber, S. Hallerberg, H. Kantz,
Physical Review E, 80,026124(2009).
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Method of prediction

Deterministic Variable constructed from P(X=1|y):

X̂ = 1, ifP(X = 1|y) > pc

= 0, if otherwise

pc is so chosen:
Not too high to make X̂ = 0 even when extreme events take
place.(Missed events)
Not too low to trigger alarm (X̂ = 1) for too long a time
without any extreme event.(False alarms)
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Study of predictability:
Receiver operating characteristics

If hit rate is plotted versus false rate using ROC[2]:

Figure: Figure adapted from A. Garber, S. Hallerberg, H. Kantz,
Physical Review E, 80,026124(2009).
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Analysis of “ROC” curve:

Analysis of plot:
pc → 0⇒ hit rate⇒ 1, False Rate⇒ 1
pc → maxyP(X = 1|y)⇒ hit rate⇒ 0, False Rate⇒ 0
Diagonal of the plot is the benchmark of prediction. Plots
lying above that have better predictability.
Predictability increases with increasing η.
If η is expressed as a fraction of smax(L),then Predictability
becomes independent of system size L.
Randomized Surrogate data shows no predictability.
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Alternate methods
A comparison

Average Height (〈h〉) and Critical Cluster Size (scritical) can
be used as Precursors to predict the extreme events.
Normalized Error Sum: ε =Unpredicted Avalanches+Total
Alarm Rate
ε = [0,1]

The ε values for internal parameter dependent
predictability and external parameter dependent
predictability are almost same.
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Conclusion:

The finiteness of Abelian sandpile leads to a temporal
correlation(repulsion) between events of large magnitudes.
This correlation is exploited to predict Xevents in the
sandpile,using only the past data of avalanches by Garber
et al.

Future Plans:
Further study of extreme events in nature and possible
methods of their prediction.
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